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Outline

• XJTLU Camus Information and Visitor Service System

• Wi-Fi Fingerprinting

• SURF 2017: Demonstration of A DNN-Based Indoor Localization System

• Scalable DNN-Based Multi-Building and Multi-Floor Indoor Localisation

• Summary
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XJTLU Camus Information and 
Visitor Service System
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Engineering Building 3F

Examples: Indoor Navigation and
Location-Aware Service

Lecture Theatre
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Wi-Fi Fingerprinting
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Location Fingerprint

EB306
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• A tuple of (L, F)
• L: Location information

• Geographic coordinates or a label (e.g., “EB306”)

• F : Vector/function of received signal 
strengths (RSSs)
• e.g., 𝜌1, ⋯ , 𝜌𝑁

𝑇 where 𝜌𝑖 is the RSS from ith
access point (APi).

Fingerprinting
Server

(MAC1, RSS1)

(MAC2, RSS2)

(MACN, RSSN)

Estimated Location
Client
(User)



RSS Measurements

Fingerprint
Database

EB306, (x2, y2, z2) {(9c:50:33:3f:98:50, -52), (9c:50:33:3f:98:51, -52), … }




EB305, (x1, y1, z1) {(9c:50:33:3f:98:50, -50), (9c:50:33:3f:98:51, -55), … }



22/06/2018

5

Location Estimation

• Deterministic
• Nearest Neighbour Methods

• Neural Network Methods
• Deep neural networks (DNNs) enabled by deep learning

• Probabilistic
• Bayesian Inference

• Support Vector Machine (SVM)

• Gaussian Process Latent Variable Model (GP-LVM)
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Nearest Neighbour Methods*

• A simple approach based on the notion of distance in the signal 
space:
• Given a fingerprint of (L, 𝜌1, ⋯ , 𝜌𝑁

𝑇) and an RSS measurement of 
𝑠1,⋯ , 𝑠𝑁

𝑇, the Euclidean distance measure between them is defined as



𝑖=1

𝑁

𝑠𝑖 − 𝜌𝑖 2

• Then, we find a fingerprint providing a minimum distance, L of which is the 
estimated location.

* P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based user location
and tracking system,” Proc. of INFOCOM 2000, vol. 2, pp. 775-784, Mar. 2000.
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https://doi.org/10.1109/INFCOM.2000.832252
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Implementation Example - 1

Main App

Wi-Fi
Scanner

(by Google ADT)

TinyWebDB
@Google App Engine

User Interface & Core Logic

Activity Starter
(interacting with other Apps)

Launch

Results
(in Text)

Store

Retrieve

11

Implementation Example - 2

Start the app and
press the ‘Find’ button.

Results of Wi-Fi scanning.

Find the location and
display the picture.
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Major Challenges in Large-Scale 
Implementation
• Scalability

• Localization accuracy

• Non-stationarity of location fingerprints
• Incremental/online learning algorithms with pruning/forgetting mechanisms*

• Passive vs. active location estimation

• Integration with other services

• Security/privacy issues

* R. Elwell and R. Polikar, “Incremental learning in nonstationary environments with controlled forgetting,” Proc. IJCNN’09.
13

SURF 2017: Demonstration of A 
DNN-Based Indoor Localization 
System
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https://doi.org/10.1109/IJCNN.2009.5178779
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A Prototype of DNN-Based Indoor Localization 
System for Floor-Level Location Estimation
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A Partial Layout of the Fourth Floor of EE Building
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DNN Parameter Values for Floor-Level 
Location Estimation

DNN Parameter Value

Ratio of Training Data to Overall Data 0.75

Batch Size 10

SAE Hidden Layers 128-64-8-64-128

SAE Activation Hyperbolic Tangent (TanH)

SAE Optimizer ADAM

SAE Loss Mean Squared Error (MSE)

Classifier Hidden Layers 64-32-7

Classifier Activation ReLU

Classifier Optimizer AdaGrad

Classifier Loss Cross Entropy

Classifier Dropout Rate 0.50

Classifier Epochs 30

17

Training and Validation Accuracy of
Floor-Level Location Estimation
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Scalable DNN-Based Multi-
Building and Multi-Floor Indoor 
Localization
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2006

2017~

Changes in XJTLU Campuses
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Floor

(SSID, RSSI)

Building

Room

(SSID, RSSI)

=
?

Hierarchical Multiclass Classifier
with Flat Loss Function

Flat Multiclass Classifier
with Hierarchical Loss Function

Building,
Floor,
Room

 







Hidden



Input

Output
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Two Ways of Representing Locations - 1

• Flattened labels
• As one-dimensional vectors

• e.g., “EB-3-06” (→ “Building_ID-Floor_ID-Location_ID”)

• For multi-class classification.

• Multi-labels
• As multi-dimensional vectors

• e.g., (“EB”, “3”, “06”)

• For multi-label classification.
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Multi-Label Classification
• Multiple labels can be assigned to each instance.

Multi-Class Classification
• Classifying an instance into (only) one of multiple classes.
• A special case of multi-label classification.

• Also called single-label classification.

Multi-Label vs. Multi-Class Classification
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Two Ways of Representing Locations - 2

• Scalability of the two representations
• In machine learning, categorical data containing labels are

one-hot encoded (see the table on the right).

• A flattened label is one-hot encoded as a whole, while each component of a 
multi-label can be one-hot encoded independently, e.g.,
• “EB-3-06” → “0…010….0” vs (“EB”, “3”, “06”) → (0…01, 010…0, 10…0)

• For a campus with 10 buildings, 10 floors/building, and 10 locations/floor,
the number of bits required for each representation with one-hot encoding is 
as follows:
• Flattened labels: 10×10×10 = 1,000

• Multi-labels: 10+10+10 = 30

Dog Cat Horse

1 0 0

0 1 0

0 0 1
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RSS1

RSS2

RSS3



RSSN
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Encoder Decoder

Stacked Autoencoder (SAE) for the reduction 
of feature space dimension

DNN Architecture for Combined Estimation of 
Building, Floor, and Location based on Multi-Class 
Classifier and Flattened Labels
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RSS1

RSS2

RSS3



RSSN

 



B1F1,1L1,1,1

B1F1,NF(1)L1,1,NL(1,1)

B1F1,2L1,2,1









Encoder Classifier

BNB
FNB,NF(NB)LNB,NF(NB),NL(NB,NF(NB))
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DNN Architecture for Scalable Building/Floor 
Classification and Floor-Level Coordinates Estimation 
based on Multi-Label Classifier
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RSS1

RSS2

RSS3



RSSN

 



B1

BNB

F1







Encoder Classifier

Fmax(NF(1),…, NF(NB))





arg max()

arg max()

Bi

Fj

L1

Lmax(…, NL(i,j), …)



Coordinates

Estimation

(x, y)

Location Coordinates Estimation: Many Reference 
Points Centred around A New Location
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Location Coordinates Estimation: Only Few 
Reference Points Centred around A New Location

29


•
1

•
2

•
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•
5

•
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•
9

•
4

•
7

•
8

Threshold

Parameter Values for Scalable DNN-Based 
Indoor Localization

DNN Parameter Value

Ratio of Training Data to Overall Data 0.90

Number of Epochs 20

Batch Size 10

SAE Hidden Layers 256-128-256

SAE Activation Rectified Linear (ReLU)

SAE Optimizer ADAM

SAE Loss Mean Squared Error (MSE)

Classifier Hidden Layers 64-128

Classifier Activation ReLU

Classifier Optimizer ADAM

Classifier Loss Binary Crossentropy

Classifier Dropout Rate 0.20 30
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Effects of the number 
of largest elements 
from the output 
location vector (𝜅) and 
the scaling factor for a
threshold (𝜎)
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Best Results from EvAAL/IPIN 2015 Competition*

32

MOSAIC HFTS RTLSUM ICSL

Building Hit Rate 
[%]

98.65 100 100 100

Floor Hit Rate [%] 93.86 96.25 93.74 86.93

Positioning Error 
(Mean) [m]

11.64 8.49 6.20 7.67

Positioning Error 
(Median) [m]

6.7 7.0 4.6 5.9

* Moreira A et al., “Wi-Fi fingerprinting in the real world – RTLSUM at the EvAAL competition.,” Proc. IPIN, 2015. pp. 1–10.
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Summary

• Introduced the feasibility study project on the XJTLU Campus Information 
and Visitor Service system.

• Reported results of our investigation on the use of DNNs for large-scale 
multi-building and multi-floor indoor localization.
• Results shows that scalable DNN-based approaches could provide localization 

performance favorably comparable to the best results from EvAAL/IPIN 2015.

• Further study is needed for hierarchical building/floor classification and 
location estimation, including
• Single-input, multi-output (SIMO) DNN architecture
• Stage-wise training
• Use of CNNs and/or RNNs based on different representation of RSSs

33

Work Packages
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Work Packages

• Theoretical and simulation study
• Advanced DNN-based indoor 

localization.
• Including CNN-based approaches.

• RNN-based trajectory estimation.
• With geomagnetic field measurements 

and time stamps.

• Prototyping and demonstration
• Build a sample RSS and geomagnetic 

field measurement database at 
XJTLU.
• e.g., for the 5th floor of IRS building.

• Implement the proposed algorithm 
and demonstrate indoor localization 
with the sample database.
• Offline demonstration with a PC

• (Optional) Online demonstration with a 
smartphone

Use of CNN for Time Series Data (e.g., Audio)

36

Spectral Domain

Treat the above as 2-dimensional image!
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Mapping of Unstructured Data into Images
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Unstructured Data (e.g., RSSs in2D arrangement) Image-Like 2D Data

2D Permutation!

Mapping of Unstructured Data into Images:
Background

• CNN
• With original data: 0.99
• With permuted data: 0.98

• 1% drop in accuracy

• Multi-layer perception (MLP)
• With original data: 0.98
• With permuted data: 0.98

• Virtually no difference
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Original Permuted
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Mapping of Unstructured Data into Images:
Challenges
• How to quantify the image-likeness?

• Number of connected regions (e.g., skimage.measure.label)

• …

• How to overcome the extremely huge size of the search space?
• e.g., # of possible permutation for MNIST image = 282! ≈ 101930.50…
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