SURF-201830 Kick-Off Meeting: Review of Indoor Localisation Based on Wi-Fi Fingerprinting with Deep Neural Networks

Kyeong Soo (Joseph) Kim Department of Electrical and Electronic Engineering Centre of Smart Grid and Information Convergence Xi'an Jiaotong-Liverpool University (XJTLU)

Outline

- XJTLU Camus Information and Visitor Service System
- Wi-Fi Fingerprinting
- SURF 2017: Demonstration of A DNN-Based Indoor Localization System
- Scalable DNN-Based Multi-Building and Multi-Floor Indoor Localisation
- Summary

3

XJTLU Camus Information and Visitor Service System

Examples: Indoor Navigation and Location-Aware Service

wi-Fi Fingerprinting

9

Location Estimation

- Deterministic
 - Nearest Neighbour Methods
 - Neural Network Methods
 - Deep neural networks (DNNs) enabled by deep learning
- Probabilistic
 - Bayesian Inference
 - Support Vector Machine (SVM)
 - Gaussian Process Latent Variable Model (GP-LVM)

Nearest Neighbour Methods*

- A simple approach based on the notion of distance in the signal space:
 - Given a fingerprint of $(\mathcal{L}, (\rho_1, \dots, \rho_N)^T)$ and an RSS measurement of $(s_1, \dots, s_N)^T$, the Euclidean <u>distance measure</u> between them is defined as

$$\sum_{i=1}^{N} (s_i - \rho_i)^2$$

• Then, we find a fingerprint providing a minimum distance, ${\cal L}$ of which is the estimated location.

* P. Bahl and V. N. Padmanabhan, "<u>RADAR: An in-building RF-based user location</u> <u>and tracking system</u>," Proc. of INFOCOM 2000, vol. 2, pp. 775-784, Mar. 2000.

Major Challenges in Large-Scale Implementation

- Scalability
- Localization accuracy
- Non-stationarity of location fingerprints
 - Incremental/online learning algorithms with pruning/forgetting mechanisms*
- Passive vs. active location estimation
- Integration with other services
- Security/privacy issues

* R. Elwell and R. Polikar, "Incremental learning in nonstationary environments with controlled forgetting," Proc. IJCNN'09.

SURF 2017: Demonstration of A DNN-Based Indoor Localization System

A Prototype of DNN-Based Indoor Localization System for Floor-Level Location Estimation

DNN Parameter Values for Floor-Level Location Estimation

DNN Parameter	Value
Ratio of Training Data to Overall Data	0.75
Batch Size	10
SAE Hidden Layers	128-64-8-64-128
SAE Activation	Hyperbolic Tangent (TanH)
SAE Optimizer	ADAM
SAE Loss	Mean Squared Error (MSE)
Classifier Hidden Layers	64-32-7
Classifier Activation	ReLU
Classifier Optimizer	AdaGrad
Classifier Loss	Cross Entropy
Classifier Dropout Rate	0.50
Classifier Epochs	30
	17

Scalable DNN-Based Multi-Building and Multi-Floor Indoor Localization

Changes in XJTLU Campuses

2006

2017~

Multi-Label vs. Multi-Class Classification 1.12 woman -0.28 in 1.23 white 1.45 dress 0.06 standing -0.13 with 3.58 tennis **Multi-Class Classification** 1.81 racket Classifying an instance into (only) one of multiple classes. 0.06 two 0.05 people A special case of multi-label classification. -0.14 in • Also called single-label classification. 0.30 green -0.09 behind -0.14 her Multi-Label Classification Image #2 • Multiple labels can be assigned to each instance. Dog -0.39-4.61 1.03 Cat 1.49 3.28 -2.37 Horse 4.21 1.46 -2.27 23

DNN Architecture for Combined Estimation of Building, Floor, and Location based on *Multi-Class Classifier* and Flattened Labels

Classifier

Encoder

13

Parameter Values for Scalable DNN-Based Indoor Localization

DNN Parameter	Value		
Ratio of Training Data to Overall Data	0.90		
Number of Epochs	20		
Batch Size	10		
SAE Hidden Layers	256-128-256		
SAE Activation	Rectified Linear (ReLU)		
SAE Optimizer	ADAM		
SAE Loss	Mean Squared Error (MSE)		
Classifier Hidden Layers	64-128		
Classifier Activation	ReLU		
Classifier Optimizer	ADAM		
Classifier Loss	Binary Crossentropy		
Classifier Dropout Rate	0.20 30		

κ	σ	Building Hit Rate [%]	Floor Hit Rate [%]	Success Rate [%]	Posit	ioning Error [m] Weighted Centroid	
1	N/A*	99.82	91.90	91.81	11.40	11.40	
	0.0	99.37	92.44	91.81	10.62	10.54	Effects of the number
	0.1	100.00	91.81	91.81	10.40	10.33	Encets of the number
2	0.2	99.82	92.62	92.44	9.74	9.66	
	0.5	99.04	91.99	91.01	9.76	9.71	ot largest elements
	0.4	100.00	90.01	90.01	10.29	10.21	or langest crements
	0.0	99.73	91.54	91.36	10.14	9.79	f
	0.1	99.91	90.91	90.82	9.92	9.76	from the output
2	0.2	98.83	90.91	90.28	9.98	9.80	
5	0.3	99.55	92.08	91.90	10.13	10.01	
	0.4	99.91	91.99	91.99	10.63	10.47	κ location vector (κ) and
	0.5	99.82	90.37	90.37	9.94	9.89	
	0.0	99.82	90.91	90.91	10.27	9.66	the cooling footon for a
	0.1	99.57	91.99	91.05	10.37	9.92	Ine scaling factor for a
4	0.2	99.04	92.00	91.90	10.20	10.09	
	0.4	99.91	92.26	92.17	10.35	10.23	→
	0.5	99.82	91.27	91.18	10.10	10.07	threshold (σ)
	0.0	99.91	91.36	91.27	11.29	10.36	
	0.1	99.91	91.63	91.63	9.90	9.62	
5	0.2	99.91	90.73	90.73	9.89	9.57	
5	0.3	99.82	90.91	90.82	10.27	9.99	
	0.4	99.73	92.17	92.08	10.17	10.01	
	0.5	99.82	92.98	92.89	10.59	10.54	
	0.0	99.82	91.90	91.72	10.84	9.71	
	0.1	99.64	92.08	91.81	10.35	9.80	
6	0.2	00.82	91.99	91.99	9.05	9.50	
	0.5	99.37	91.00	91.00	10.49	10.22	
	0.5	99.64	90.91	90.64	9.55	9.52	
	0.0	99.82	89.29	89.29	11.74	10.22	
	0.1	99.82	90.19	90.01	10.43	9.82	
7	0.2	99.91	91.45	91.45	10.00	9.55	
· (0.3	99.91	91.63	91.54	9.75	9.53	
	0.4	99.64	90.46	90.19	10.42	10.28	
	0.5	99.55	91.45	91.36	9.83	9.73	
	0.0	99.91	90.19	90.10	11.32	9.27	
	0.1	100.00	91.27	91.27	10.62	10.14	
8	0.2	99.02	91.27	91.10	9.70	9.29	
	0.4	99.91	90.37	90.28	10.21	10.14	31
	0.5	99.91	90.55	90.55	9.86	9.79	
			20,00	2 2.00	2.00	211.0	

Best Results from EvAAL/IPIN 2015 Competition*

	MOSAIC	HFTS	RTLSUM	ICSL
Building Hit Rate [%]	98.65	100	100	100
Floor Hit Rate [%]	93.86	96.25	93.74	86.93
Positioning Error (Mean) [m]	11.64	8.49	6.20	7.67
Positioning Error (Median) [m]	6.7	7.0	4.6	5.9

* Moreira A et al., "Wi-Fi fingerprinting in the real world – RTLSUM at the EvAAL competition.," Proc. IPIN, 2015. pp. 1–10.

Summary

- Introduced the feasibility study project on the XJTLU Campus Information and Visitor Service system.
- Reported results of our investigation on the use of DNNs for large-scale multi-building and multi-floor indoor localization.
 - Results shows that scalable DNN-based approaches could provide localization performance favorably comparable to the best results from EvAAL/IPIN 2015.
- Further study is needed for hierarchical building/floor classification and location estimation, including
 - Single-input, multi-output (SIMO) DNN architecture
 - Stage-wise training
 - Use of CNNs and/or RNNs based on different representation of RSSs

Work Packages

Work Packages

• Theoretical and simulation study

- Advanced DNN-based indoor localization.
 - Including CNN-based approaches.
- RNN-based trajectory estimation.
 - With geomagnetic field measurements and time stamps.

• Prototyping and demonstration

- Build a sample RSS and geomagnetic field measurement database at XJTLU.
 - e.g., for the 5th floor of IRS building.
- Implement the proposed algorithm and demonstrate indoor localization with the sample database.
 - Offline demonstration with a PC
 - (*Optional*) Online demonstration with a smartphone

Mapping of Unstructured Data into Images: Challenges

- How to quantify the *image-likeness*?
 - Number of connected regions (e.g., skimage.measure.label)

• ...

- How to overcome the extremely huge *size of the search space*?
 - e.g., # of possible permutation for MNIST image = $28^2! \approx 10^{1930.50...}$