Why LSTM outperforms RNN?

Xintao Huan
Outline

• Quick Review of RNN
• Investigate RNN
• Key Issue
• Solution - LSTM
Quick Review of RNN

Recurrent Neural Network (RNN) and the unfolding in time of the computation involved in its forward computation.
InVESTIGATE RNN

$h_t = f_W(h_{t-1}, x_t)$

$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$

$y_t = W_{hy}h_t$

W_{hh}: weight between hidden layers
W_{xh}: weight between input layer and hidden layer
W_{hy}: weight between hidden layer and output layer
Investigate RNN

In the computation of the hidden layer, Weight Matrix W is shared in all time-steps!
Investigate RNN

In TRAINING, we compare the output of the time-step y_t with the reference result, then the loss L_t is obtained, and sequence loss L will be back propagated from the end time-step to the first time-step.

Next, we employ **Stochastic Gradient Descent (SGD)** to minimize the loss and update the parameters in W.
Investigate RNN

Back Propagation Through Time (BPTT)

Forward through entire sequence to compute the **Loss**.
Backward through entire sequence to **minimize the loss** and **update the parameters** in W.
Key Issue

In every backpropagation from h_t to h_{t-1}:

W is multiplied!

$w_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$

$= \tanh \left((W_{hh} \ W_{hx}) \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$

$= \tanh \left(W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right)$

E.g. computing gradient of h_0 involves many factors of W!

If sequence is long enough and $W > 1$, **exploding gradients**!

$W < 1$, **vanishing gradients**!
Key Issue

Exploding gradients:

Employ **Gradient Clipping** to scale the gradient (e.g. cut the value).

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```

Vanishing gradients:

Change RNN architecture!
Solution - LSTM

With the cell state, it runs straight down the entire chain, with only some minor linear interactions (NOT matrix multiplication like in RNN)

It’s very easy for information to just flow along it unchanged.
Solution - LSTM

RNN

Vanishing gradients SOLVED!
1. Understanding LSTM http://colah.github.io/posts/2015-08-Understanding-LSTMs/

2. The Unreasonable Effectiveness of Recurrent Neural Networks http://karpathy.github.io/2015/05/21/rnn-effectiveness/

5. https://www.zhihu.com/question/44895610

6. https://my.oschina.net/u/2719468/blog/662099

7. https://yq.aliyun.com/articles/574218

Thanks for your attention!