Week 7-9: Physics II – Einstein's Theory of Relativity

Kyeong Soo (Joseph) Kim

XJTLU

Outline

- Michelson-Morley Experiment
- Einstein's Special Theory of Relativity
- Einstein's General Theory of Relativity

Michelson-Morley Experiment

Luminiferous Aether

Michelson-Morley Interferometer

Michelson-Morley Interferometer: Two Swimmers

Michelson-Morley Experiment: Stationary in the Aether

Michelson-Morley Experiment: Moving through the Aether

Einstein's Special Theory of Relativity

Two Postulates

- The laws of physics are the same for all observers in uniform motion relative to one another (*principle of relativity*).
- The speed of light in a vacuum is the same for all observers, regardless of their relative motion or of the motion of the light source (*constant speed of light*).

Relativity of Simultaneity

When you are inside the train

When you stand at the platform

Time Dilation

$$\Delta t' = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Mass-Energy Equivalence

$E = mc^2$

Universe as A Cellular Automaton

Einstein's General Theory of Relativity

Equivalence Principle

Things move the same way in a gravity field as those in a reference frame accelerating upward with the same magnitude.

Things falling freely in a gravity field all accelerate by the same amount, so they move the same way as if they were in a region of zero gravity — ``weightlessness"!

Light Paths under Gravity

The path of a light beam in three different types of reference frames moving with respect to the person *outside* the elevator. The light path shown is what the person *inside* the elevator sees. Under large acceleration, the beam of light will curve downward. It should also do that in a region of strong gravity.

Curved Spacetime

