# Week 1-3: Mathematics Limit and Calculus 

Kyeong Soo (Joseph) Kim XJTLU

## Outline

- Speed and Velocity
- Limit
- Abstraction
- Calculus


## Speed and Velocity

## Usain Bolt



WWW.UNIVEREALSPRRTG.CIM

TGV


## Speed／속력（速力）vs．Velocity／속도（速度）

－Consider the blue movement over 10 second shown below．
－Average speed（distance／time）：$(6 \mathrm{~m}+2 \mathrm{~m}+6 \mathrm{~m}) / 10 \mathrm{~s}=1.4 \mathrm{~m} / \mathrm{s}$
－Average velocity（displacement／time）： $2 \mathrm{~m} / 10 \mathrm{~s}=0.2 \mathrm{~m} / \mathrm{s}$


## Speed of Usain Bolt and TGV

- For Usain Bolt
- Distance (d): 100 m
- Time it takes $(t): 9.58 \mathrm{~s}$
- Speed $(v): v=\frac{d}{t}=\frac{100 \mathrm{~m}}{9.58 \mathrm{~s}} \approx 10.44 \mathrm{~m} / \mathrm{s} \approx 37.58 \mathrm{~km} / \mathrm{h}$
- For TGV
- Distance (d): ?
- Time it takes $(t)$ : ?
- Speed (v): ?

Average Speed



## Instantaneous Speed - Origin of Derivative

- Consider the average speed over different time intervals as follows:
- $\frac{f(t+2 \Delta t)-f(t)}{2 \Delta t}$ for $[t, t+2 \Delta t]$
- $\frac{f(t+\Delta t)-f(t)}{\Delta t}$ for $[t, t+\Delta t]$
- What if $\Delta t$ becomes extremely small?
- $f^{\prime}(t) \triangleq \lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}$




## How to Measure the Speed of Car/Train/...?

- Count the number of pulses per time unit.
- e.g., 10 pulses/s
- Divide it by the number of slits in the disk.
- e.g., 10 pulses/s $\div 20$ slits/rotation $=0.5$ rotation/s
- Multiply it the circumference of a tire/wheel.
- e.g., 0.5 rotation $/ \mathrm{s} \times 1 \mathrm{~m} /$ rotation $=0.5 \mathrm{~m} / \mathrm{s}$


Abstraction

## What is abstraction/추상 (抽象)?

- Have you seen a dog?
- How about 0, 1, 2 ...?


Limit

## Zeno's Paradoxes - Achilles and the Tortoise



## Cartesian coordinate system*

- By René Descartes (1596-1650)
- French Philosopher, Mathematician, and Scientist




I think, therefore I am.

## Function

- A relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output.




## $(\varepsilon, \delta)$-Definition of Limit

- Consider the following:
$-f$ : A real-valued function defined on a subset $D$ of the real numbers.
$-c$ : A limit point of $D$.
$-L$ : A real number.
- We say that

$$
\lim _{x \rightarrow c} f(x)=L
$$

if for every $\varepsilon>0$ there exists a $\delta$ such that, for all $x \in D$, if $0<|x-c|<\delta$, then $|f(x)-L|<\varepsilon$.


## $(\varepsilon, \delta)$-Definition of Limit - Example

- Let us prove

$$
\lim _{x \rightarrow 5}(3 x-3)=12
$$

- The key is to show how $\delta$ and $\varepsilon$ must be related to each other. Specifically, we want show that

$$
0<|x-5|<\delta \Rightarrow|(3 x-3)-12|<\varepsilon
$$

- Simplifying, factoring and dividing 3 on the right hand side gives us

$$
|x-5|<\frac{\varepsilon}{3} \Rightarrow \delta=\frac{\varepsilon}{3} .
$$

Calculus

## Differential Calculus

- Given a function $y=f(x)$, its derivative - written as $\frac{d y}{d x}$ - is a measure of the rate at which the value $y$ of the function changes with respect to the change of variable $x$.
- The derivative of the function $f$ at $a$ is defined as the limit, i.e.,

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- We can consider the derivative of the function $y=f(x)$ as another function that sends the point $x$ to the derivative $f$ at $x$, which is denoted as

$$
f^{\prime}(x)=\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

## Differential Calculus - Example 1

- Differentiate $x^{2}$.

$$
\begin{aligned}
\frac{d}{d x} x^{2} & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}\right)-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h)=2 x+\lim _{h \rightarrow 0} h=2 x
\end{aligned}
$$

## Differential Calculus - Example 2

- $\frac{d}{d x} \sin x=\cos x$
- $\frac{d}{d x} \cos x=-\sin x$



## Integral Calculus

- Given a function $y=f(x)$ and interval $[\mathrm{a}, \mathrm{b}]$ of the real line, the definite integral

$$
\int_{a}^{b} f(x) d x
$$

is defined as the signed area of the region bounded by the graph of $f(x)$, the x axis and two vertical lines $x=a$ and $x=$ b.


- The reverse of differentiation is defined as an indefinite integral, i.e.,

$$
F(x)=\int f(x)
$$

- Note that there is no interval.
- With the indefinite integral, we can express the definite integral as

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$



## Relationship between Differentiation and Integration

$$
\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}=?
$$

- For a very small $h$, the area under the curve $f(x)$ from $x$ to $x+h$ can be approximated as a rectangle, i.e.,
- $A(x+h)-A(x) \approx h f(x)$
- Dividing it by $h$ and taking limit, we obtain

- $\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}=f(x)$
- i.e., $\frac{d}{d x} A(x)=f(x)$

