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Outline

• XJTLU Camus Information and Visitor Service System

• Wi-Fi Fingerprinting

• SURF 2017

• SURF 2018

• Scalable DNN-Based Multi-Building and Multi-Floor Indoor Localisation

• Plans
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XJTLU Camus Information and 
Visitor Service System
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XJTLU Camus Information and Visitor Service System
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Engineering Building 3F

Examples: Indoor Navigation and
Location-Aware Service

Lecture Theatre
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Wi-Fi Fingerprinting
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Location Fingerprint

EB306
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• A tuple of (L, F)
• L: Location information

• Geographic coordinates or a label (e.g., “EB306”)

• F : Vector/function of received signal 
strengths (RSSs)
• e.g., 𝜌1, ⋯ , 𝜌𝑁

𝑇 where 𝜌𝑖 is the RSS from ith
access point (APi).
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RSS Measurements

Fingerprint
Database

EB306, (x2, y2, z2) {(9c:50:33:3f:98:50, -52), (9c:50:33:3f:98:51, -52), … }




EB305, (x1, y1, z1) {(9c:50:33:3f:98:50, -50), (9c:50:33:3f:98:51, -55), … }

7

8



6/19/2019

5

Location Estimation

• Deterministic
• Nearest Neighbour Methods

• Neural Network Methods
• Deep neural networks (DNNs) enabled by deep learning

• Probabilistic
• Bayesian Inference

• Support Vector Machine (SVM)

• Gaussian Process Latent Variable Model (GP-LVM)
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Nearest Neighbour Methods*

• A simple approach based on the notion of distance in the signal 
space:
• Given a fingerprint of (L, 𝜌1, ⋯ , 𝜌𝑁

𝑇) and an RSS measurement of 
𝑠1,⋯ , 𝑠𝑁

𝑇, the Euclidean distance measure between them is defined as



𝑖=1

𝑁

𝑠𝑖 − 𝜌𝑖 2

• Then, we find a fingerprint providing a minimum distance, L of which is the 
estimated location.

* P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based user location
and tracking system,” Proc. of INFOCOM 2000, vol. 2, pp. 775-784, Mar. 2000.
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https://doi.org/10.1109/INFCOM.2000.832252
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Major Challenges in Large-Scale 
Implementation
• Scalability

• Localization accuracy

• Non-stationarity of location fingerprints
• Incremental/online learning algorithms with pruning/forgetting mechanisms*

• Passive vs. active location estimation

• Integration with other services

• Security/privacy issues

* R. Elwell and R. Polikar, “Incremental learning in nonstationary environments with controlled forgetting,” Proc. IJCNN’09.
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SURF 2017: Indoor Localisation
Based on Wi-Fi Fingerprinting 
with Fuzzy Sets
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https://doi.org/10.1109/IJCNN.2009.5178779
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A Prototype of DNN-Based Indoor Localization 
System for Floor-Level Location Estimation
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A Partial Layout of the Fourth Floor of EE Building
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DNN Parameter Values for Floor-Level 
Location Estimation

DNN Parameter Value

Ratio of Training Data to Overall Data 0.75

Batch Size 10

SAE Hidden Layers 128-64-8-64-128

SAE Activation Hyperbolic Tangent (TanH)

SAE Optimizer ADAM

SAE Loss Mean Squared Error (MSE)

Classifier Hidden Layers 64-32-7

Classifier Activation ReLU

Classifier Optimizer AdaGrad

Classifier Loss Cross Entropy

Classifier Dropout Rate 0.50

Classifier Epochs 30
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Training and Validation Accuracy of
Floor-Level Location Estimation
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SURF 2018: Trajectory Estimation of 
Mobile Users/Devices Based on Wi-Fi
Fingerprinting and Deep Neural 
Networks
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Toward A Campus-Wide Indoor Localization System:
Multi-Floor Indoor Localization with RSS/Geomagnetic Field in 2018

184th Floor of IBSS Building 5th Floor of IBSS Building
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Data Processing – Random Waypoint Model (RWM)

Trajectory Estimation Based on Human 
Walking Model and LSTM

Use of CNN for Time Series Data (e.g., Audio)
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Spectral Domain

Treat the above as 2-dimensional image!

19

20



6/19/2019

11

Mapping of Unstructured Data into Images

21

Unstructured Data (e.g., RSSs in2D arrangement) Image-Like 2D Data

2D Permutation!

Mapping of Unstructured Data into Images:
Background

• CNN
• With original data: 0.99
• With permuted data: 0.98

• 1% drop in accuracy

• Multi-layer perceptron (MLP)
• With original data: 0.98
• With permuted data: 0.98

• Virtually no difference
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Original Permuted
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Mapping of Unstructured Data into Images:
Challenges

• How to quantify the image-likeness?
• Number of connected regions (e.g., 

skimage.measure.label)

• …

• How to overcome the extremely huge 
size of the search space?
• e.g., # of possible permutation for MNIST 

image = 282! ≈ 101930.50…
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Results from SURF-201830

Scalable DNN-Based Multi-
Building and Multi-Floor Indoor 
Localization
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2006

2017~

Changes in XJTLU Campuses
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Plans

• WP1: Statistical analysis of XJTLUIndoorLoc dataset.
• To quantify the dependency of measurement data on mobile devices.
• To investigate the impact of mobile devices on indoor localization/trajectory 

estimation performance
• To do additional measurements with new mobile devices.

• WP2: Handling device orientation information for geomagnetic field 
intensity.
• To study the device coordinate frame and rotation data of smartphones based on 

their built-in accelerometer, gyroscope, and compass.
• To investigate how to handle mismatch between the device orientation of 

geomagnetic filed data in the dataset and that of a new measurement during the 
online indoor localization/trajectory estimation phase.
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