Neural Network with Plural Voting for Wi-Fi Fingerprinting-based Indoor Localization Algorithm

Yuanyuan Zhang (Elon)

Department of Electrical and Electronic Engineering Xian Jiaotong-Liverpool University (XJTLU)

SURF 2018 4th meeting

Outline

Previous research

- Method
- Limitations

Proposed Wi-Fi Fingerprinting System

- System architecture
- Data collection and features extraction
- Structure of the proposed neural networks and training

Performance evalution

- Simulation
- Experimentation

- B

Outline

Previous research

- Method
- Limitations

Proposed Wi-Fi Fingerprinting System

- System architecture
- Data collection and features extraction
- Structure of the proposed neural networks and training

3 Performance evalution

- Simulation
- Experimentation

3/29

Previous research

Method

• Collect Receiver Signal Strength Indicator (RSSI) to construct a radio map.

- B

- Collect Receiver Signal Strength Indicator (RSSI) to construct a radio map.
- Use Support Vector Machine (SVM) and Multi-Class SVM (MCSVM) to extract best features.

- Collect Receiver Signal Strength Indicator (RSSI) to construct a radio map.
- Use Support Vector Machine (SVM) and Multi-Class SVM (MCSVM) to extract best features.
- Use K-Nearest Neighbor (KNN) to find the best matching point from radio map.

Previous research

Limitations

Limitations

• The significant variation of RSSIs degrade the performance of KNN method.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Limitations

- The significant variation of RSSIs degrade the performance of KNN method.
- Didn't perform generalization very well (radio map).

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 2018 4th meeting 5/29

Outline

Previous research

- Method
- Limitations

Proposed Wi-Fi Fingerprinting System

- System architecture
- Data collection and features extraction
- Structure of the proposed neural networks and training

SURF 2018 4th meeting

6/29

3 Performance evalution

- Simulation
- Experimentation

 Not only focus on single neural network but apply multiple neural networks with plural voting based Wi-Fi ngerprint algorithm

- Not only focus on single neural network but apply multiple neural networks with plural voting based Wi-Fi ngerprint algorithm
- Extract novel feature to construct a reliable feature map (difference map)

System architecture

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 2018 4th meeting 8/29

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 201

マロット 御入 不通入 不通入

図 Xian Jactorg-Liverpool University 西交利物浦大学

In disctorg-Liverpool University 西交利物浦大学

イロト イヨト イヨト イヨト

 Each Reference Point (RP) needs multiple-scan and saved as Total RSSI Data

- Each Reference Point (RP) needs multiple-scan and saved as Total RSSI Data
- Use first record to construct
 Radio Map
 RSSI

Vian Jisotong-Liverpool University 西交利物浦大学

イロト イヨト イヨト イヨト

 Take absolute value of the difference of each AP's RSSIs in Total RSSI Data and Radio Map RSSI

- Take absolute value of the difference of each AP's RSSIs in Total RSSI Data and Radio Map RSSI
- Build a feature map database (difference map)

In Jactory-Liverpool University 西交利が浦大学

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 2018 4th meeting 12/29

図 Xian Jactorg-Liverpool University 西交利物浦大学

 Split the difference map's data according to different APs and used as inputs for each independent neural network

雨交利物浦主爆

Yuanyuan Zhang (Elon) (Xian Jiaotong-LivercNeural Network with Plural Voting for Wi-Fi Fir 12/29 SURF 2018 4th meeting

- Split the difference map's data according to different APs and used as inputs for each independent neural network
- Combine the last layer's output and pass through SoftMax Function

12/29

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 2018 4th meeting

イロト イヨト イヨト イヨト

• Collect RSSIs of APs at unknown position

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Collect RSSIs of APs at unknown position
- Extract feature by previous method (subtracted from radio map)

< <p>A < </p>

- Collect RSSIs of APs at unknown position
- Extract feature by previous method (subtracted from radio map)
- Use multiple neural network to predict the position

- Collect RSSIs of APs at unknown position
- Extract feature by previous method (subtracted from radio map)
- Use multiple neural network to predict the position The first 3 outputs is used to estimate the location

< <p>A < </p>

4 E 5

- Collect RSSIs of APs at unknown position
- Extract feature by previous method (subtracted from radio map)
- Use multiple neural network to predict the position
 The first 3 outputs is used to estimate the location (KNN and k = 3)

.

Outline

Previous research

- Method
- Limitations

Proposed Wi-Fi Fingerprinting System

- System architecture
- Data collection and features extraction
- Structure of the proposed neural networks and training
- 3 Performance evalution
 - Simulation
 - Experimentation

A typical scenario:

Parameters	Meaning
К	number of APs
R	number of RPs
Ν	measure N samples at each RP

- (E

System architecture

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 2018 4th meeting 16/29

Total RSSI Data: $A \in \mathbb{R}^{NR \times (K+1)}$

- E - N

	a_{11}	a_{12}		$a_{1(K+1)}$
	a_{21}	a_{22}		$a_{2(K+1)}$
	:	÷	·	:
A =	a_{R1}	a_{R2}		a_{RK}
<i>71</i> —	$a_{(R+1)1}$	$a_{(R+1)2}$		$a_{(R+1)(K+1)}$
	$a_{(R+2)1}$	$a_{(R+2)2}$		$a_{(R+2)(K+1)}$
	÷	÷	·	:
	$a_{(NR)1}$	$a_{(NR)2}$		$a_{(NR)(K+1)}$

	a_{11}	a_{12}		$a_{1(K+1)}$
	a_{21}	a_{22}		$a_{2(K+1)}$
	:	÷	·	:
A =	a_{R1}	a_{R2}		a_{RK}
<i>71</i> —	$a_{(R+1)1}$	$a_{(R+1)2}$		$a_{(R+1)(K+1)}$
	$a_{(R+2)1}$	$a_{(R+2)2}$		$a_{(R+2)(K+1)}$
	÷	÷	·	:
	$a_{(NR)1}$	$a_{(NR)2}$		$a_{(NR)(K+1)}$

Column 1 to k represents different APs

	a_{11}	a_{12}		$a_{1(K+1)}$
	a_{21}	a_{22}		$a_{2(K+1)}$
	÷	÷	·	:
A =	a_{R1}	a_{R2}		a_{RK}
<i>71</i> —	$a_{(R+1)1}$	$a_{(R+1)2}$		$a_{(R+1)(K+1)}$
	$a_{(R+2)1}$	$a_{(R+2)2}$		$a_{(R+2)(K+1)}$
	÷	÷	·	:
	$a_{(NR)1}$	$a_{(NR)2}$		$a_{(NR)(K+1)}$

- Column 1 to k represents different APs
- Column k+1 represents the MAC address for each AP

< < >>

★ ∃ > ★

	a_{11}	a_{12}		$a_{1(K+1)}$
	a_{21}	a_{22}		$a_{2(K+1)}$
	÷	÷	·	:
A =	a_{R1}	a_{R2}		a_{RK}
	$a_{(R+1)1}$	$a_{(R+1)2}$	• • •	$a_{(R+1)(K+1)}$
	$a_{(R+2)1}$	$a_{(R+2)2}$	• • •	$a_{(R+2)(K+1)}$
	÷	÷	·	:
	$a_{(NR)1}$	$a_{(NR)2}$	• • •	$a_{(NR)(K+1)}$

- Column 1 to k represents different APs
- Column k+1 represents the MAC address for each AP
- Row number (1 to NR) represents different samples at different RPs

A D M A A A M M

Radio Map RSSI: $B \in \mathbb{R}^{R \times (K+1)}$

(The first part of A)

★ ∃ > ★

Radio Map RSSI: $B \in \mathbb{R}^{R \times (K+1)}$

(The first part of A)

Difference Map: $D \in \mathbb{R}^{K \times (NR) \times R}$

→ ∃ →

Difference Map: $D \in \mathbb{R}^{K \times (NR) \times R}$

Dimensions	Meaning
1	number of APs (neural networks)
2	data size
3	number of RPs

< ロ > < 同 > < 回 > < 回 >

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 2018 4th meeting 19/29

Difference Map: $D \in \mathbb{R}^{K \times (NR) \times R}$

Dimensions	Meaning
1	number of APs (neural networks)
2	data size
3	number of RPs

Aim at transform RSSI data into independent input data for each neural network.

.

あたわ物海と

Difference Map: $D \in \mathbb{R}^{K \times (NR) \times R}$

→ ∃ →

Difference Map: $D \in \mathbb{R}^{K \times (NR) \times R}$

Algorithm 1: Difference map construction create D[K, (NR), R] n = length of A K = number of AP in Bfor i = 0 to n - 1 do $C = |A[i, :] - B|^T$ for j = 0 to K - 1 do concatenateC[j, :] to D[j]end for returnD

Difference Map: $D \in \mathbb{R}^{K \times (NR) \times R}$

Algorithm 1: Difference map construction create D[K, (NR), R] n = length of A K = number of AP in Bfor i = 0 to n - 1 do $C = |A[i, :] - B|^T$ for j = 0 to K - 1 do concatenateC[j, :] to D[j]end for returnD • Each row in **A** is subtracted from **B** and then take absolute value.

ヘロト 人間 とくほとくほ

Difference Map: $D \in \mathbb{R}^{K \times (NR) \times R}$

Algorithm 1: Difference map construction create D[K, (NR), R] n = length of A K = number of AP in Bfor i = 0 to n - 1 do $C = |A[i, :] - B|^T$ for j = 0 to K - 1 do concatenateC[j, :] to D[j]end for returnD

- Each row in **A** is subtracted from **B** and then take absolute value.
- The column in resulting matrix is a row in **D** (Transposition).

Difference Map: $D \in \mathbb{R}^{K \times (NR) \times R}$

Algorithm 1: Difference map construction create D[K, (NR), R] n = length of A K = number of AP in Bfor i = 0 to n - 1 do $C = |A[i, :] - B|^T$ for j = 0 to K - 1 do concatenateC[j, :] to D[j]end for returnD

- Each row in **A** is subtracted from **B** and then take absolute value.
- The column in resulting matrix is a row in **D** (Transposition).
- The column k+1 (MAC address) will be concatenated on D(i) at last.

Outline

Previous research

- Method
- Limitations

Proposed Wi-Fi Fingerprinting System

- System architecture
- Data collection and features extraction
- Structure of the proposed neural networks and training

3 Performance evalution

- Simulation
- Experimentation

21/29

Structure of the proposed neural networks and training

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 2018 4th meeting

Structure of the proposed neural networks and training Combiner

$$L_{k} = W^{T}_{k,n} * h_{k,n}$$

$$L = \sum_{k=1}^{K} L_{k}$$
(1)

Parameters	Meaning
h _{k,n}	output of the last hidden layer of the k th network
W _{k,n}	associated weights for its output layer
L_k	output for each independent network
L	element-wise summation of the outputs छाट्रसोर्गजाउड़
	・ロト・西・・田・・田・・田・・田・・田・・田・・田・・田・・田・・田・・田・・田・・

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 2018 4th meeting 23/29

Structure of the proposed neural networks and training SoftMax Function

< A

Structure of the proposed neural networks and training SoftMax Function

The prediction probability for each reference point RP_i :

$$p_i = rac{e^{L(i)}}{\sum_{i=1}^r e^{L(i)}}$$

< < >>

Image: A matrix

Apply Algorithm 1 to a new measured RSSI

- Apply Algorithm 1 to a new measured RSSI
- Restore the model to predict the probable positions

< <p>A < </p>

- B

- Apply Algorithm 1 to a new measured RSSI
- Restore the model to predict the probable positions
- Apply the following function where $pi \ge 0.2$ and $k \le 3$

$$T(\mathbf{x}_t, \mathbf{y}_t) = \frac{\sum_{i=1}^k p_i * RP(\mathbf{x}_i, \mathbf{y}_i)}{\sum_{i=1}^k p_i}$$

Parameters	Meaning	
$T(x_t, y_t)$	position of test point	
$RP(x_i, y_i)$	i th mostprobableRPforatestpoint	
p_i	prediction probability for RP_i	寥 Xim Jiatong-Liverpool University 西交利力/滴え夢
	< □ > < 圖 > < 注 >	<

Outline

Previous research

- Method
- Limitations

Proposed Wi-Fi Fingerprinting System

- System architecture
- Data collection and features extraction
- Structure of the proposed neural networks and training

Performance evalution

- Simulation
- Experimentation

Performance evaluation

Simulation results

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 2018 4th meeting 27/29

Performance evaluation

Experimentation results

Model	Root Mean Square
	Error(RMSE) in meter(m)
Scenario1 (proposed	5.001
method)	
Scenario2 (proposed	0.960
method)	
Scenario1 (KNN method)	7.28
Scenario2 (KNN method)	10.92

Model	Root Mean Square
	Error(RMSE)
Scenario1 (proposed	1.74
method)	
Scenario2 (proposed	0.907
method)	
Scenario1 (KNN method)	2.38
Scenario2 (KNN method)	2.09

Fig.: Using corridor dataset

Fig.: In Office environment

Thanks for listening! Any questions?

Yuanyuan Zhang (Elon) (Xian Jiaotong-LiverpNeural Network with Plural Voting for Wi-Fi Fir SURF 2018 4th meeting 29/29