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Fuzzy sets



BASIC DEFINITIONS
Fuzzy set
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Operations on Fuzzy sets.

(1) (Union) µA∪B(x) = max{µA(x), µB(x)}
(2) (Intersection) µA∩B(x) = min{µA(x), µB(x)}
(3) (Complement) µAc (x) = 1− µA(x)

I For example, let
A = {(x1, 0.2), (x2, 0.7), (x3, 0.4), (x4, 1)},
B = {(x1, 0), (x2, 0.9), (x3, 0.5), (x4, 0.3)}

I A ∪ B = {(x1, 0.2), (x2, 0.9), (x3, 0.5), (x4, 1)}
I A ∩ B = {(x1, 0), (x2, 0.7), (x3, 0.4), (x4, 0.3)}
I Ac = {(x1, 0.8), (x2, 0.3), (x3, 0.6), (x4, 0)}
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Definition.

I Let F be a σ − algebra. m is called a fuzzy measure on
(X ,F) iff

(F1) m(φ) = 0 when φ ∈ F
(F2) For E ∈ F ,F ∈ F and E ⊂ F , it implies m(E ) ≤ m(F )

(monotonicity)

(F3) For {En} ⊂ F ,E1 ⊂ E2 ⊂ · · · , and ∪∞n=1En ∈ F imply
lim
n→∞

m(En) = m(∪∞n=1En) (continuity from below)

(F4) For {En} ⊂ F ,E1 ⊃ E2 ⊃ · · · ,m(E1) <∞ and ∩∞n=1En ∈ F
imply lim

n→∞
m(En) = m(∩∞n=1En) (continuity from above).

No addition rule!



Definition.

I Let F be a σ − algebra and A ∈ F . The Sugeno integral of f
on A with respect to m, which is denoted by S

∫
A fdm, is

defined by

S
∫
A fdm , sup

α∈[0,1]
[α ∧m(A ∩ (f )α)],

where (f )α = {x|f ≥ α} and ∨ and ∧ denote maximum and
minimum operators, respectively, i.e., a ∨ b = max(a, b) and
a ∧ b = min(a, b).



Definition.

I Let F be a σ− algebra and A ∈ F . The Choquet integral of f
on A with respect to m, which is denoted by C

∫
A fdm, is

defined by

C
∫
A fdm ,

n∑
i=1

(f(xi )− f(xi−1))m(Ai ),

where ·i states that the indices have been permuted so that
0 ≤ f(x1) ≤ · · · ≤ (f )(xn) ≤ 1, f(x0) = 0 and
Ai , {xi , · · · , xn}.



Riemann Integral vs Choquet Integral



Similarity measure



Definition.

I A real function s : F2 → [0,∞] is called a similarity measure,
if s has following properties:

(S1) s(A,B) = s(B,A), ∀A,B ∈ F
(S2) s(D,Dc) = 0, ∀D ∈ P(X )

(S3) s(C ,C ) = max
∀A,B∈F

s(A,B), ∀C ∈ F

(S4) A,B,C ∈ F , if A ⊂ B ⊂ C , then s(A,B) > s(A,C ) and
s(B,C ) > s(A,C )



Theorem.

I Let A,B ∈ F and m be a fuzzy measure on
X = {x1, x2, · · · , xn}. Then

(I1) Sd
S (A,B) = 1− S

∫
fdmd ,

(I2) Sd
C (A,B) = 1− C

∫
fdmd ,

where f(x) = |µA(x)− µB(x)|, md(E ) = 1
n

∑
x∈E x

1
d and

d ∈ {1, 2, · · · }, are similarity measure between A and B.



Theorem.

I Similarity measure based on distance measure. The nearer two
sets are, the more similar they are.

(L1)
∑n

i=1 |xi − yi |
(L2)

√∑n
i=1(xi − yi )2

I Let A = (1, 0, 0, 0),B = (1, 1, 1, 1), and C = ( 1
2 ,

1
2 ,

1
2 ,

1
2 ), then

I DL1(A,C ) = 2

I DL1(B,C ) = 2
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Theorem.

I The first one is the correlation-based similarity measure. In
this case, we calculate similarity between two items i and j,
which is denoted by wi,j .The correlation between item i and j
will be

wi,j =
∑

u∈U(ru,i−r̄i)(ru,j−r̄j)√∑
u∈U(ru,i−r̄i)2

√∑
i∈I (ru,j−r̄j)2

,

where ru,i is the rating of user u on item i, r̄i is the average
rating of the ith item by those users.



Theorem.

I The second one is vector cosine-based similarity. Let i and j
be vectors of items which is purchased by users u and v.
Then the vector cosine similarity between two users will be

wi,j = cos(
−→
i ,
−→
j ) =

−→
i ·
−→
j

‖
−→
i ‖‖
−→
j ‖
,

where ” · ” denotes the dot-product of the two vectors.



Example

i1 i2 i3 i4 i5 i6

A 5 5 4

B 2 3 4

C 4 4 2

D 3 3 3

I wA,C = cos(−→a ,−→c ) = 5×4+4×4√
52+52+42×

√
42+42+22

= 0.739

I wA,B = cos(−→a ,
−→
b ) = 5×2√

52+52+42×
√

22+32+42
= 0.229



Example

i1 i2 i3 i4 i5 i6

A 1/3 1/3 -2/3

B -1 0 1

C 2/3 2/3 -4/3

D 0 0 0 0

I wA,C = cos(−→a ,−→c ) =
1
3
× 2

3
− 2

3
× 2

3√
1
3

2
+ 1

3

2
+ 2

3

2×
√

2
3

2
+ 1

3

2
+ 4

3

2
= −0.179

I wA,B = cos(−→a ,
−→
b ) =

1
3
×−1√

1
3

2
+ 1

3

2
+ 2

3

2×
√

12+02+12
= −0.289

I wB,D = cos(
−→
b ,
−→
d ) = 0.
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